Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS Pathog ; 18(9): e1010811, 2022 09.
Article in English | MEDLINE | ID: covidwho-2021986

ABSTRACT

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.


Subject(s)
COVID-19 , Sirtuins , Antiviral Agents , Exoribonucleases/metabolism , Humans , Lysine , Methyltransferases/metabolism , NAD , Proviruses , RNA, Viral/metabolism , SARS-CoV-2 , Sirtuins/genetics , Viral Nonstructural Proteins/metabolism
2.
Nat Commun ; 12(1): 5553, 2021 09 21.
Article in English | MEDLINE | ID: covidwho-1434104

ABSTRACT

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigens S and N: the main targets for vaccine and antibody testing efforts. We discover significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We show that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, show a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Cell Line , Dipeptides/pharmacology , Humans , Mutation , Myosin-Light-Chain Kinase/antagonists & inhibitors , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism , Proteolysis , Proteomics , RNA, Small Interfering/pharmacology , SARS-CoV-2/genetics , Viral Proteases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics , src-Family Kinases/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL